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Abstract. We discuss the connection between the zero-spacing limit of Nhdields
Kupershmidt lattice and the KdV-type theory corresponding to the Lie alggbha+ 1). The
caseN = 2 is worked out in detail, recovering from the limit process the Boussinesq theory
with its infinitely many commuting vector fields, their Lax pairs and Hamiltonian formulations.
The ‘recombination method’ proposed here to derive the Boussinesq hierarchy from the limit of
the N = 2 Kupershmidt system works, in principle, for arbitravy

1. Introduction

In this paper we conclude an analysis of the relations between certain integrable lattices and
the KdV-type theories.

In [1] we have considered a class of lattices, referred td/aterra systemsin the
‘interpolated version’, which is the starting point for the continuous limit, the phase space
of the N-fields Volterra {y) system is a set oN-tuples A = (ay, ..., ay), where each
elementa, is a real smooth function of a continuous variableThe Lax operator is

N
LG(A) = % (apA(Zp—l)e + ap[(—2p+l)s]A(—2p+l)€)~ (11)
p=1
Here, for each displacementand each functiory’ of x, we indicate withf},; the shifted
functionx — f(x 4 1) (so the notation,,; stands for the functiow — a,(x +n)). Also,
we denote withA, the shift operator sending any functighinto fi,;;. All the shifts
considered in equation (1.1) are integer multiples of a fundamentaleshigpresenting the
lattice spacing.
The limit € — 0, in which (A, — 1)/e — 9., has been analysed in [1]; in this way,
a strict relation has been pointed out between ¥hesystem and a KdV-type theory in
N fields. This limiting KdV theory in the fielda: = (u3, ..., uy) is associated (in the
Drinfeld—Sokolov sense [2]) to the Lie algelya(N), and rests on the Lax operator

| 1¢
LPM () 1= 9%V + = Z(ulé)ZN_ZZ + 92Ny, (1.2)
2
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In the caseV = 2, the main structures describing the integrability of tp¢2) KdV (Lax
pairs, Hamiltonian structure, hierarchies of conserved functionals and commuting vector
fields) have been fully reconstructed from the> 0 limit of homologousV, objects. The
limit process for the cas®y = 1 had also been analysed in [3]; the theory is well known
in the literature on integrable lattices as the Kac—Moerbeke system [4], and its zero-spacing
limit is the ordinary KdV theory.

In the present paper we analyse along the same lines another class of integrable
lattices, introduced in [5], to which we refer as tiefields Kupershmidt (oK y) systems
(N =1,2,3,...). Working directly in the interpolated version, we can describe khe
phase space as a setftuplesa = (a4, ..., ay); eachoy is a real smooth function of the
variablex, ranging over the toruf” := R/Z. The Lax operator, depending on the lattice
spacinge, is

N
L (o) = Ac + ZaZkflAEZkJrl)e- (1.3)
k=1
This operator gives rise to a hierarchy of infinitely many commuting vector fields, which
are Hamiltonian with respect to a quadratic Poisson tensor (this could be interpreted as the
reduction of a conveniently defined quadraiematrix Poisson tensor on the algebra of
differential-difference operators).

If N =1, the corresponding theory is equivalent to that based on the symmetric operator
(1.1); in our terminology, theK; and V; systems are two isomorphic realizations of the
Kac—Moerbeke theory. In contrast, thg, and Ky systems are essentially different for
N > 1.

Such a difference can also be traced back by considering the O limit. It was
proved in [5] that the limit of theKy Lax operator under a suitable field rescaling
ar— u="(uy,...,uy)is

N
L(u) = 9." 4+ " ued N, (1.4)
k=1
This is the Lax operator of the KdV-type (or Gelfand-Dickey) theory corresponding to the
Lie algebras/(N + 1), namely the ordinary KdV fotN = 1, the Boussinesq theory for
N =2, etc.

In spite of these results on the limit of thi€y Lax operator (1.3), it is still worth
discussing the: — O procedure, so as to reconstruct the full structure characterizing the
integrability of the limiting KdV-type theory. In particular, it is of interest to recover its
infinitely many commuting vector fields (a topic not discussed in [5]) with the associated
Lax pairs and Hamiltonian formulations.

In this paper we illustrate a method to carry on this program. The proposed approach
will be worked in detail for the Boussinesq ca¥e= 2; the caseV = 1 will be employed
to introduce the main technique, and the case= 3 will also be considered in relation
with the Poisson tensor. A distinguished feature of these constructions is the necessity to
recombine linearly the vector fields of the hierarchy, the Hamiltonian functions and the
companions of the Lax operator in order to recover the corresponding KdV-type structures
for € — 0; the constant coefficients appearing in these linear combinations are determined
algorithmically.

The algorithm employed here is different from the recursive one proposed in [6] for
recombining the vector fields in th% = 1 case (and independently developed in [3],
starting from theV; Lax operator). This iterative method is based on ¢he> 0 limit of
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the biHamiltonian recursion relations; its extension from geto the generaky system
is not possible, because only one (local) Hamiltonian structure is knowN ferl.

To overcome this difficulty, we will give alternative characterizations of the
recombination coefficients, namet, conditions (for better cIaritij,l) forthe N = 1
theory,C@ for N = 2, etc); these conditions rest on theexpansion of the Kupershmidt
Lax pairs and Hamiltonian functions at a particular point of the phase space. A compatibility
argument allows us to characterize the global behaviour of the recombined objects on the
grounds of theC; prescriptions at the particular point; in this way the recombination
problem, living in principle in a functional space, is reduced to the solution of a linear
system in a finite number of numerical unknowns. A similar idea was employed in [1] for
the Vy systems.

The paper is organized as follows. In section 2 we use Khgor Kac—Moerbeke)
system to exemplify the€® method. In section 3 we work in detail the, system and
recover the Boussinesq theory in the-> 0 limit; the main theorem on the recombination
scheme (proposition 3.3), which justifies td8? algorithm, is proved in section 4. In
section 5 we briefly discuss th€y system forN arbitrary, and show by direct computation
that the N = 3 Poisson tensor gives, in ther— 0 limit, the Poisson structure of the
sl(4) KdV-type theory. Even though the framework in which we work is well defined
on purely theoretical grounds, the explicit constructions require considerable effort from
the computational viewpoint; therefore, many have been realized usinlyiatigematica
package.

2. The K; system and its continuous limit

Our description of this system and its continuous limit will be concise, because this topic
has already been considered in the two known formulations, both with a Kupershmidt-type
Lax operator [6] and with a symmetric one [1, 3]. From the viewpoint of the present work,
this system is thev = 1 case of the Kupershmid-fields theory; we briefly discuss it here

to make the paper self-contained. In comparison with [6], we add some facts concerning
the continuous limit of the Hamiltonians and the companions of the Lax operator.

The Lax pairs and the Hamiltonian formulation of tke hierarchy are summarized in
table 1. We denote wittd the phase space of the system, each point of which is a smooth
functiona = a(x).

In the definition of AS given in the table, the subscript denotes the projection on
the shift operators of non-negative order; the trace tr of a differential-shift operator is the
integral overx of the zero-order term in the shiftthis notation will also be employed in
the rest of the paper.

The Poisson tensor, the vector fields and the Hamiltonians reported in table 1 coincide
exactly (also in the normalizations) with the homologous objects of [1]; these were
expressed in terms of another field variablerelated to the present one ly= %a[{e].

With appropriate specifications, one could show that this transformation sets up a gauge
equivalence between the symmetric Lax operator considered in [1] and the Kupershmidt-
type operator employed here.

As for the KdV theory, we adopt all the notation and normalization conventions

1 More precisely, consider an operaiGr.= Zp gpApe, Where the indexp ranges over the relative integers and
each coefficient is a smooth functigp(x). Then, by definition,

Gii=) gl trG ::/dxgo(x).

p=0
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Table 1. The K1 (or Kac—Moerbeke) system.

Lax formulation for thesth vector fieldX? : dL€/dt, = [AS, L€]
LE(@) i= Ac + aA_ AS(@) == F(LHP (@) (5=0,1,2,...)).
Poisson tensor at a point: 05 TjA— T, A

05 = %(aa[el A —aap—A_e).
Hamiltonian formulation: X$ = Qdfs (s=0,1,2,...).
Hamiltonian functions:
1 1
fS@) = 5/dx log @) = Ztr(Le)Z*(a) (s=123,...).
s
First companions of the Lax operator:
Aj@) =3
Af(e) = 322 + 3 (@ + g
AS(a) = IAn + %(0{ + apze] + 03] + fe)) Aze + %(ot2 + @[ + 200 + o0 + "‘[ze])
A§(@) i= 3 Mg + 3(ar + ose + p2e) + afae] + fae] + ) Ase
+ %(0{2 + aape + ot[zzel + @[ + aape + 202 [3¢]
+ o aag + ofyq + 200 + 20qa(g + @ + of) A
+ %(a3 + 2a2a[,5] + a2 (] + ota[{d + 30!20![5] + 20026 ]
+ 01[22406[5] + 200 ) 0e] + Q[2e] X[3e] Y] + 3aa[261 + 20t[2€]06[2€] + a[i])-
First Hamiltonians afterfg:
fi(a) = / dxa
€ 1 2
f3(@) = 5 dx (a” + 200¢))
€ 1 3 2 2
fi(@ =3 [ dre” + 3u%aq + aofy + Saaqqapd).
First vector fields:
X5(@) =0
X{(@) = Fe(org — o)
X5() = %a(—aa[_e] — Q2] X[ —¢] — ot[z_e] + oo + apqo + alze])
X5(@) = 3a(—a?a(-q — aa[-2qa[—q — of o[- — o[-2qa[-3]a[—d] — 200l — 201-2qaf g —of g

+ oot + @epd [ + afh o + apdapaard + 2eaf + 2opaafy + ofp).

of [1,3]. In particulart/ denotes the phase space of the theory, each point of which
is a smooth functioru = u(x); the Hamiltonians of the hierarchy are the functionals
RKY () = (4°/(2s + 1)) Tr(LKV)s+2(x), and the companions afX® (u) = 8., + u
1

are the operator8<® (1) := 4~1(LKV).?(u) (s = 0,1,2,...), etc. Of course, when
speaking of any KdV-type theory we denote withthe projection on non-negative powers
of 9, and with Tr the well known Adler trace for pseudo-differential operators.

Now, following [5], we introduce the transformation

O :U—-> A ur> o =1+¢e%u (2.1)

and employ it to pull back to the phase spd¢dehe geometrical structures and the Lax
scheme of thek; system living onA. Let us consider, in particular, the Lax operator

LE(“) = Le(a)|0l:1+€2u (22)
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and the pull back)¢ of the Poisson tensor. Then, in the— O limit, we obtain
LE(u) = 2+ €?(dcx + 1) + O(€%) = 2+ €2LXV (1) + O(e®) (2.3)

.1 1 1 1
0 =50.+0 (?) = zQ*“’V(u) +0 (?) . (2.4)

The K; system also possesses a second Poisson tensor, and a recombination of the latter
with Q¢ produces in the — 0 limit the second KdV Poisson tensor; we give no more
details about this fact, falling outside the purposes of the present paper.

All the Hamiltonians, the vector fields and the companion operators of KdV theory
can be obtained as continuous limits of homologd&isobjects. The main point in this
construction is that the&'; objects must be conveniently recombined before sendiigy
zero; as observed in the introduction, the numerical coefficients of these recombinations
could be determined recursively with the methods described in [6], but a different approach
will be preferred here, which is more suitable for the extension toKhesystems with
N > 1. Let us start with the following.

Definition 2.1. Let z be an indeterminate, and
1
rMz) =z 4+ = (2.5)

Fors =1,2,3,... we will put
q5(2) = 302 ()4 (2.6)
the subscript- denoting the projection on the non-negative powers.oAlso, we will put

po(e) == 1-62 ps(e) = i <28> a1+ S62) (s=1,23,..). (2.7)
2 25 \ s

In order to make the motivation for the previous definition clear, let us considek the
Lax operator and its companions at the paint 0 of the spacé/ (corresponding tee = 1
in equation (2.1)); it is easily found that
(L)*(0) = A"(Ao) AS(0) = g5(Ao). (2.8)

Furthermore, let us evaluate tig Hamiltonians au = constant= 1 (i.e.a = 1+ ¢€?); the
traces appearing in their definition are easily computed, and it is found that

f5@) = 3log(1+ €% = pole) + O(e®) (2.9)
€ 1 2s 2\s 3
fi @)= % (1+ €% = ps(e) + O(e”) (s=1,23..) (2.10)
so the polynomialspg(e), p1(e), ... turn out to be second-order expansions of the

Hamiltonians atu = 1.

Definition 2.2. Lets € {0, 1, 2, ...} be a fixed integer; consider two systems of coefficients
(¢sj)j=—1,..s and @y;)j=0. s—1 (intending the second one to be emptysit= 0). These
coefficients are said to satisfy ti@&? conditions if the following holds:

s =0:
co,—1+ coopole) = 3¢ (2.11)
s > 1.
K s—1 )
Cszj (66) + stj)v] (ee) = 4&_162s_1 + O(GZY) (212)
j=1 j=0
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and

Cy—1+ Z Csij(G) =0. (213)
=0

The superscriptl) in CY marks the relations between the above prescriptions and the
K, system, as already explained in the introduction. (For avoiding too many indexes, this
superscript has been omitted in the coefficianjsd,;.)

Fors =1,23,..., theC® conditions (2.12) and (2.13) give rise to a system 02
linear, algebraic equations in the 2 2 unknownsc,; andd,;; the equations are obtained
by equating the coefficients of &, €2, ..., >~ in the two sides of equation (2.12), and
setting to zero the coefficients of 1 amélin the left-hand side of equation (2.13).

For a given integers, let us consider a system of coefficients satisfying @&
conditions, and employ them to construct the linear combinations of operators, vector fields
and Hamiltonians according to the following prescriptions:

s s—1
Bf 1= A5+ ) dy(LSY (2.14)
j=1 j=0
Z5 =) ey X§ (2.15)
j=1
N
hSi=co1+ Y e ff (2.16)
Jj=0

(intending B§ := 0, Z§ := 0). We can regard these objects to be defined on eithedtbe
thel/ phase space, thanks to the one-to-one correspondence (2.1). Let us work, in particular,
onl, and perform expansions in powersepfwhere a shift operatot,. occurs, we replace
it with the expansion o&*?. With these prescriptions, the recombinations (2.14)—(2.16)
give rise to power series ia; the coefficients are differential operators in the caseipf
and differential polynomials (im) in the case ofZ{. In the case of¢, each coefficient of
the e-expansion also involves a differential polynomial, integrated aver

Let us return to thec™ conditions, and interpret them from the viewpoint of these
expansions. Fos > 1, comparing equation (2.8) with (2.12) (and replacing formally
with €3), we see that (2.12) meari (0) = 41>~ 19%~1 + O(e%); on the other hand,
41921 s just thesth KAV companion operator at = 0, SO we can write

BS(0) = €27 1BV (0) 4 O(e%). (2.17)

As for the second”® condition (2.13), by comparison with (2.9), (2.10) and (2.16) we see
that it amounts to the prescription

he(1) = O(e®) (2.18)

for the recombined Hamiltonian.
Finally, equation (2.11) means

h§(1) = 1e? = 2n§™ (). (2.19)

Even though equations (2.17)—(2.19) simply involve the behaviour of the recomkined
operators and Hamiltonians at a particular point of the phase gpatey allow us to infer
the following, much stronger statement.
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Proposition 2.3. Lets € {0, 1, 2, ...} be a fixed integer, and consider the recombinations
(2.14)—(2.16), with coefficients satisfying tii&? conditions. Therat each pointu € U it
is

B (u) = € 1BXV (i) + O(e%) (2.20)
Z¢(u) = €175V () + 0(e?) (2.21)
hE(u) = e T2hKV (u) 4 O(e>13). (2.22)

The proof of these statements is omitted for brevity; it is similar to the (even more
technical) proof of proposition 3.3, given explicitly in section 4 for tkig system.
Let us illustrate the recombination schemesset 0, 1, 2, 3, depending on

q1(z) = 1+ 322 q2(z) = 3+ 2% + 3z* g3(z) = 10+ B2+ 3+ 15 (2.23)
22(2) =z2+2+Z—12 M) =2+3+ g +Zi3 (2.24)
and
po(e) = €2 pi(e) = 1+ €2 pa(€) = 3 +3¢* pa(e) = X2 +10%  (2.25)
Equation (2.11) has the unique solution

co-1=0 coo= 1. (2.26)

Fors =1, 2, 3 equations (2.12) and (2.13) have unique solutions, given respectively by

c11=-1 clo=—2 =1 dig=—3 (2.27)
co1=—3 c20="6 c21=—6 c2=1 dp=2  dp=-2 (2.28)
€31 = —%5 c30= —20 c31 =30 cz3o=—10 c3=1

d3o = —45 d3 = 32 dp=—2. (2.29)

The recombinations (2.14)-(2.16) with these coefficients behave as foreseen by
proposition 2.3; for example, let us consider the case3 in which

BS = 30A] — 1045 + A§ — 45+ 32L° — B(L%)? (2.30)
75 = 30X§ — 10X§ + X§ (2.31)
h§ = —2 — 20f5 + 30f; — 10f5 + f5. (2.32)

Starting from table 1, one can apply the transformation (2.1) to the above recombinations
and expand ir¢; to the lowest orders, it is found
B§(u) = 166%[Dyrxxx + Sudvx + 2utx 0y + 3(Guer + 3u?)x + B (rrx + 2uu,)] + O(e®)
= BEY (1) + O(€) (2.33)
Z5(u) = € (Uyyrex + L0utty oy 4 20u 1, + 30u%u,) + O(e®) = 2 ZKV (u) + O(®) (2.34)

1
h§(u) = 568 f d (5u® — 10uu? + u? ) + O(e®) = €8n5V (u) + O(9). (2.35)
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Table 2. K7 system.

Lax formulation for thesth vector fieldX¢: dL€/dt, = [ASLE]
LE(@) i=Ac +aA_ + pA_3z AS(@) == 3(LHP () (s=0,1,2,....).
Poisson tensor at a point: Q5 TFA—> T A

(;)=3(g o))
h 3 pa oo ép
o i= PR A2e + o[ Ac — a0 ] A_c — pA_2

€

op = 0PE] Az + ap2e] Aze — ap — AP[—e] A—e

€

Sa = ] PAe + ap — 2| PA_2¢ — A[-3] PA_3e
op = PPB] A3 + PP2e] A2e + P[] Ae — PP[—] De — PP[-2e] D—2¢ — PP[—3e] A—3ec-
Hamiltonian formulation: X§ = Q°dfs (s=01,2...).

Hamiltonian functions:

IHOE %/dx log(—3p) fE(e) = %tr(L‘)zs(a) (s=1,23,...).

First companions of the Lax operator:

Ap(e) = 3

Af(@) = 3 Az + Lo + o)

AS(@) = 3 Ase + Lo + e + oz + o) Az
+ 30 + a0p_q + 2001q + opqaq +ofy + o + prd + pa + oL

AS(a) = %AsE + %(Ol + o[5e] + o2¢] + ae] + A[3e] + Afe]) Ase
+ 3% +aapq +ap+aa-q+aapd +2opq g +apagapd Fab + 200
+ 202¢) ] + 3] [e] + a[zél + 0+ p5e] + P2¢] + Plae] + P[3e] + Ofe]) A2e
+ %(as + 2(120[[,5] + aa[{E] + 30[20([4 + 2xape o + 0‘[225]0‘[6]
+ 2000 ] O[] +0[2¢] X[3€] X[e] +3aoc[2€] +2a[ge]a[2€] +ot[3€] +2ap + o p+201 p
+ 2app2] + 026 Pl2e] T o[—e] Pl2e] + A[3e] Pl2e] + 201e] Pl2e] + AP[—e] + U] Pl4e]
+ 20pj3e] + A2e] pLae] + A4l P3e] + 3el Plae] + 20 Plae] + 2000e] + X2e] Ple)
+ o[- Ple] + 20 Ple] + PA[-3e] + Q-] ¥[-2¢] + PA[-2¢] + Pl Y[-2€])-

First Hamiltonians afterf:
fi(o) = / dx o
1
f5 (@) = > / dr(e? + 2aape) + 2p)
1
f3 (o) = 3 / dr(a® + 30[201[5] + 30‘0‘[25] + Baaqe)aae) + 3ap + 3 o + 3appe + 326 + 3ep3e])-

First vector fields:
XE
i = (1)

3 X;p(a)
where, fors =0, 1, 2, 3:
X§ (@) =0 X5 (@) =0

X] g(@) == —aa[_q +aageg — p + P[]

X1 ,(0) '=ap — a[_2e]p — ¥[-3]p + &[] p

X;,a (@) = 7012(1[,(] — Q[ 2¢] X[ —¢] — (101[276] + azale] + a2 oe] + aalze] — P — A[-2] P — U[-3] P — U[—¢] P
+ app2e] + @[2e] pl2e] + X[3e] P[2¢] + X[e] Pl2e] — AP[—e] T P[3e]

X5 (@) = ap — of 5qp — 202 0[ 3]0 — X[-4][-3] P — Of 3P + AU p — A[-2]¥[~e] P + 200c] p
+ o2ejafe] p + aﬁ]p + PP2¢] = PP[—2¢] — PP[-3€] — PP[—€] T+ PP[3e] T PPLe]
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Table 2. (Continued)

X§ o (00) == 0, (50) + 0, (5p)

X5, () = 05, (8a) + 05, (8p)

with

Sa == a? + 200 + oz[z_d + oz[ze] + 20— + ] Q2] + A U] + A[—26] X[ —] + P + P[—¢] T+ Ple] +P[2¢] + P[3€]
80 ‘= + o] + o] + O[-2¢] + O3]

(these are the components of4d.

3. The K, system and Boussinesq theory

The main facts about th&, system are described in table 2. The interpolated version of
this system is a theory in two field variableg := « anda; := p. The phase spacd is a

set of such pairsx = («, p); at each point the tangent and cotangent spdgesand 7 ;A

are represented as sets of pairs= (¢, o) andsa = (8w, 8p), with the duality form

da, @) == /dx(aaa+app). (3.1)

Table 2 reports the Lax formulation, the Poisson structure and the explicit expressions of
the first elements in the associated hierarchy.

Concerning the Boussinesq theory in the field variales= u, u, := v, we collect
hereafter the basic elements, mainly in order to fix some notational standards. We denote
with U/ the phase space, whose points are paits (u, v); with our notation, the familiar
Boussinesq equation,, + %uxxxx + %(uz)xx = 0 arises from the evolution equation
corresponding to the vector field5°!.

In order to connect the theories described in tables 2 and 3, let us consider the
transformation®¢ : U/ — a, u = (u, v) = a = (a, p), where

o =2+ 36

o= —% - %ezu + gegv. 3.2)
This is the specialization to the cade= 2 of the general transformation introduced in [5],
in order to obtain thel/(N + 1) Lax operator from the limit of theKy Lax operator. In
fact, setting

L (u) ‘= L ()| a=0r () (3.3)
one easily finds, in the — 0 limit,
Lé(u) = § + 363 (0cxx + udy 4 v) + O(e?) = § + 5€3LB%(u) + O(e?). (3.4)

Now, let us go on in the analysis of tke— O limit, and employ the transformatiaf© to
pull back ontol/ the Poisson tensor of table 2; in this way we obtain, at each poitite
Poisson tensor

05, = (T,O) Q4 lazer ) (T, ©) . (3.5)

The above formula contains the inverses of the tangent and cotangenfp®@ps 7, —
T,Aand T e : TXA — T:XU; explicit computations give

2 1 e 1 e 2 3
0= (s ) (1o o) (Y7 Ti) eo
3/4e° 3/4e %Q;a %sz 0 3/4¢
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Table 3. Boussinesq theory.

Lax formulation for thesth vector fieldZBo!: dLBoY/dr, = [BBou, [ Bov]
Bou . Bou - [5/2]—1,7 Bou %[35/2]*%
LP%(u) 1= Oxxx +udy +v B =3Y (L= (s=0,12,....).
(of course, ]| stands for the integer part).
Poisson tensor at a poimt QBov: TR Y — T U
(2)-3( o))
v/ 3\a, 0/\sw/’
Hamiltonian formulation: zBou — Bougp,Bou (s=0,1,2,...).
Hamiltonian functions:
[s/2]+1 113s/21+ 2
hEUw) = e THLE (33,

First non-zero companions of the Lax operator:
BBOU(u) = 3,
BEU(w) = 9y, + Zu.
First Hamiltonians:
hE%U(u) = / du
hE%U(u) = / dxv
h5%(u) = / dxuv
1
hE%U(w) = 5 / dr(—u® + 92 — Qu,v + 3u?)
1
h?ou(u) =35 / e (—u® + Quut® — Buxe® — 18uttx v — i yrrv + 18uv% — 9, 2).

First non-zero vector fields:

Z5%(u) = (ZY >

Z:?o”(u) _ < —lyy + 20y > )

2 2
—3Uxxx — ZUUY + Uxx

where Q¢ _, etc are the matrix elements reported in table 2, wathand p given by

ao’?

equation (3.2). The-expansion of this tensor gives

e 1 0 o, 1 _ 1 5o 1
Qu—@<ax 0>+O<€—3)—?Qu +O(;> 3.7)

In order to obtain (fore — 0) the Hamiltonians, the vector fields and the companion
operators of the Boussinesq theory, we recombine the homologous objectskof slgetem
with the method already described in the previous section for the Easel.

Definition 3.1. Let z be an indeterminate, and
@ = 2 2
38 K= 5 7 3

Fors =123, ..., we will put

45(2) = 105 (@)+ (3.9)

AM2)i=z+ § - (3.8)
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and
1 2 21 2 H2 ) 3

ps(€) 1= 5 TeMA= (2)) + rem(u(z)A™"(2))e” + rem —35 )° (3.10)
where the ‘reminder’ rem is the coefficient of the zero-order term. iAlso, we will put

po(e) 1= €% — 265, (3.11)
Let us consider the Lax operator for the Kupershmidt system and its companions, evaluated
atu =v =0 (i.e.a = 2, p = —1 according to equation (3.2)); with the notation just
defined, we can write

(L)*(0,0) = A°(AL) AS(0,0) = gs(A). (3.12)
The cubic polynomials in equation (3.10) and (3.11) are obtained by evaluatingsthe
Hamiltonians at = v = 1 (i.e.a = 2+ 2€2, p = —% — €2 + 3¢°) and expanding up to
order three ire:

64, 1) = py(e) + Oeh (s=0,1,2..)). (3.13)

In order to prove this statement we observe that, writifig place ofA., fors = 1,2, 3, ...
we have

2s
fEL 1 = 2—1srem (/\(z) + u(x)e? + %é) : (3.14)
However,
4 2 8s2%1(z)
(A(z) + 1(z)€? + @e3> = A% (2) 4+ 25u(z)A > L(2)e? + 3—Z363 +0(¢* (3.15)

and so, taking the reminder, we obtain equation (3.13); the validity of this equation for
s = 0 can also be checked easily.
The recombination rules in which we are interested are based on the following.

Definition 3.2. Let s € {0,1,2,...} be a given integer, and consider two systems of
coefficients (c¢y;)j=—1,..s and @;);=o....[s/21-1 (intending the second one to be empty if
s =0 ors = 1). These coefficients are said to satisfy th@ conditions if the following
holds:

s =0:

co—1+ Coo[)o(é) = 62 + 0(63) (316)
s = 1:

1,1+ c10po(€) + c11pa(e) = €° (3.17)
s =2

s [s/2]-1 )
chjqj () + Z dsj)\'] () = 3ls/2]-1 [3s/2]-2 + O(E[3s/2]71) (3.18)
=1 =0
and

o1+ Y cyjpi(€) =0, (3.19)
j=0
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For each integes, the C? conditions correspond to a system of as many equations as
the unknown coefficients. This is clear for= 0 and 1. Fors > 2, we must equate the
coefficients of all powers of from 0 to [3/2] — 2 in equation (3.18), and set to zero the
coefficients of 1,62, €2 in equation (3.19); therefore, the total number of equations to be
satisfied is H- ([3s/2] — 2) + 3 = [3s5/2] + 2, which is just the number of coefficients,;)
and (dy;).

From a given system of coefficients satisfying i conditions for some, let us
define the following linear combinations of operators, vector fields and Hamiltonians:

K [s/2]-1
Bf =) cyAi+ Y dy(L) (3.20)
j=1 j=0
Z5 =) XS (3.21)
j=1
hSi=co1+ Y e ff (3.22)
j=0

(intending B§ := 0, Z§ := 0). Then, we have by construction
dL¢

— =[B{, L 3.23
o =B L] (3:23)
where ¢'dé, is the derivative along the vector fielf, and

Z¢ = Q°dnt. (3.24)

If s > 2, let us evaluate the recombined operatotat (0, 0) and expand it in powers of
€. Recalling thatA;. = ¢*?, and replacing with €3 in equation (3.18), we recognize this
equation to be equivalent to

B(0,0) = 30/2-1¢135/21-2[35/21-2 | O 135/2-1y 6[35/2]723?ou(0’ 0) + O(el3/2-1).
(3.25)

This clarifies the meaning of the fir&l® condition; the second one, corresponding to
equation (3.19), means that the recombined Hamiltonian behaves as follaws &t, 1):

he(1, 1) = O(e™). (3.26)
The C? conditions fors = 0 and 1 consist only of equations (3.16) and (3.17), whose
meaning is

61, 1) = €2+ O(e®) = €hB(L, 1) + O(e®) (3.27)

R5(1, 1) = €2+ O(e*) = 3n8%U(1, 1) + O(e™). (3.28)

Just as in theV = 1 theory considered in the previous section, the above statements on the

recombined operator and Hamiltonian at a particular point of the dgammtrol the global
behaviour of the recombinations (3.20)—(3.22):

Proposition 3.3. Lets € {0, 1,2, ...} be a fixed integer. Th€® conditions imply thagt
each pointu € U it is
BE(u) = eB/A-2pBou(y) 1 O/ (3.29)
Z¢ (u) = €B/27278%w) + O(e*/Ah (3.30)
e (u) = B/2H2pBoU(y) 4 O(l3/2143) (3.31)
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The next section will be fully devoted to the proof of this proposition. Independent of
the general argument proposed therein, statements (3.29)—(3.31) can be checked by direct
computation for the lowest values of say up tos = 4. To perform the calculations, it is
necessary to know that

q1(z) = %zz + 3 q2(z) = 32 + gzz + %8
qa(z) = 328+ 4% + B2 4 10
qa(z) = 32° + 220 + 8,4 4 1832,2 4 8092 (3.32)

pole) = €? — 2¢° pi(e) = 2+ 5€? pa(e) = + Qe+ 363

pa(e) = 2+ 102+ Q3 py(e) = 2234 10222 4 9803, (3.33)
The unique system of coefficients satisfying th&? condition for s = 0 (i.e.

equation (3.16)) is
co-1=0 coo= 1. (3.34)
Fors = 1 we must satisfy equation (3.17), yielding the unique solution
cL-i=-3  co=-3  cu=j (3.35)
Let us consider the recombined Hamiltonians
5= 15 (3.36)
hi=—3—3f5 +3fi- (3.37)
Expressing the summands as in table 2, performing the substitution (3.2) and expanding in

e, we find

h(u) = % / dx log(1 + 2¢%u — 4€3v) = €2 / dx u + O(e®) = €2h5%(u) + O(e®) (3.38)

31 5 3 3 2,
hi(u) = 5 4/dxlog(1+26u 4ev)+4/dx(2+3eu)

=é / dx v + O(e?) = 3hF%(u) 4+ O(e?) (3.39)

in agreement with proposition 3.3. The other statements in this proposition are trivially
satisfied fors = 0 and 1 (note than‘O“(u) =0 and Zf‘ou(u) = 0 in these cases).

Fors > 2, theC® conditions are represented by equations (3.18) and (3.19); we report
the solutions up ta = 4, which are unique. Far = 2, the solution is

19 1 9 3 5
C2-1=7% €20=7 c21=—7 €2 =3 doo = —55. (3.40)

Fors = 3 we find

37 1 57 21 9
3-1=—7% €30 = —3 31 =g 32=—7% €33 = 75
— L
d30 = 120 (341)
and, finally, the solution fos = 4 is
147 1 45 57 27 9
C4-1= F5 Ca0 =3 Ca=—7 Cp2= ¢ €43 = —735 Caa= 115

dao = S dyy=—2. (3.42)
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These coefficients can be employed to construct the recombinations (3.20)—(3.22); for
example, fors = 3 we have

By = §A1 - A5+ A5+ 1o (3.43)
z§ = 3X5 — 2X5+ 2X§ (3.44)
s=-F i TFA-FFE ks (3.45)
On application of the transformation (3.2), the lowest-order expansioase
BS(u) = €2BE(u) + O(e3) (3.46)
Z5(u) = €278%(u) 4+ O(e®) (3.47)
S(u) = €®h5%%u) + O(e’) (3.48)

(the Boussinesq objects being as in table 3).
Similar statements hold for = 4; for example, the recombined Hamiltonian

W= +3f - FH+ 5 - %5+l (3.49)
has the expansion
h(u) = €hB%wu) + O(d). (3.50)

The justification of equations (3.46)—(3.48) and (3.50) by direct computation (rather than by
the theoretical arguments of section 4) is a task of a great computational complexity. Using
an automatic manipulator is essential for this test; this is in fact what we actuafly did

4. Proof of proposition 3.3

Fors = 0 and 1, the verification of equations (3.29)—(3.31) rests on the direct computation
sketched in section 3. From now on, and up to the end of the present seci®man
arbitrary integer greater than or equal to two. The proof will be divided into three steps; in
spite of technical differences, some basic ideas already employed in the previous paper [1]
can be recognized.

Step 1:e¢-expansions of th&, structures and their recombinationdt is evident that only
non-negative powers of will appear in the developments of the companion operators
A¢, the powers ofL¢ and the recombinations (3.20). Let> 0 be the exponent of the
lowest-order term in the-expansion ofB;; then we can write

+00
Bj(u) =) €"Bn(w) (4.1)
m=q

where B, (u) is, for eachm, a differential operator with coefficients depending
polynomially on the fieldsu = (u,v) and theirx-derivatives. The non-negative integer
g = q(s) will be determined in step 2; note that, by definition, the operdoy(u) is
non-zero, at least at some poiate /. For theK, Lax operator, we have the expansion

400
LE(u) = 2 + ) €"L(u) (4.2)
m=3

1 The explicit expressions of the objects to be recombined #gr3 are those written in table 2. For the sake of
brevity, the printout forf; has not been reported in the table.
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where each terni, (u) is also a differential operator, depending polynomially wrand
its derivatives; in particular,

La(u) = L% (u) (4.3)

(recall equation (3.4)). Now let us consider the Hamiltoniafi§(a) is (the integral over
x of) log(—3p) while f (), for j > 1, is (the integral of) a polynomial expressiondn
o and their shifts.

Expressingx and p via equation (3.2), we see that their shifts of any ordere

Ufke] = 2+ %qu[ke] =2+ %qu + %ESkux + 0(64)

Plke] = —% — %ezu[ke] + %e?’v[kg] = —% - %ezu — %ESkux + %e?’v + O(e. (4.4)

This implies that the expansion up to order three of any of the Hamiltonfaris of the
form

constant+ constante2 / dx u + constante® / dx v + constante® / dx u, 4+ O(eh).

The third integral vanishes due to the presence of a totiérivative. Similar conclusions
hold for the recombination{, so there are three real constan{s«, and y, such that

hi(u) = ns + K €2 [ ox u + Xse3/dx v+ O(eh. (4.5)

Comparing this result with equation (3.26) (expressing the secficcondition) we easily
infer thatn, = «x, = x, = 0, i.e.h¢(u) = O(e*). More explicitly, we can write

+00
hS(u) = " €"hy m(w) (4.6)
m=4

where each term; ,, (u) is (the integral over of) a polynomial density in the fieldg and
their x-derivatives.

We go on expanding and consider tkie Poisson tensor. Recalling equation (3.7), we
can write

+00

05,= > € Ounu (4.7)

m=—4

where each term is a matrix differential operator, the first one being the Boussinesq Poisson
tensor:

Q-4 =02 (4.8)

Now, let us consider the recombined vector figdg, from the Hamiltonian formulation
(3.23), from the previous expansion ¢f and equation (4.6), we infer that

Zi(u) =) " Zy(u) (4.9)
m=0

where Z; ., (u) depends polynomially om and its derivatives. All these expansions will
be used in the rest of the proof.
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Step 2. Refinement in the expansiongpfand Z;. From now on, we denote bgy the
Lie derivative along any vector field/; with this notation, the Lax formulation 3.23 aff
is written as

Lz:L° =[B;, L]. (4.10)
We insert in this equation the expansions (4.9), (4.2) and (4.1), and infer that
Zsm(u) =0 form < q. (4.12)

This is obvious ifg = 0; if ¢ > 0 (which is indeed the case, as we will see later), (4.11)
follows from comparison between the two sides of (4.10). In principle, the left-hand side
contains all powers of of exponent greater than or equal to three; on the other hand, the

right-hand side is clearly @7*+3), so the coefficients o€3, €4, ..., €?*? in the left-hand
side must be zero, yielding the equations
L7.,L3=0 (4.12)
Lz,0La+Lz,L3=0 (4.13)

Lz.oLgr2+ Lz, Losat -+ Lz, ,Ls=0. (4.14)

s,q-1

From the explicit expression df; = %LBOU it is evident thatCw Lz = 0 for a vector field
W iff W is identically zero. So, equation (4.12) impli&s o = 0; inserting this result in
(4.13) we obtainlz Lz = 0, which implies in turnZ, ; = O, iteration of this argument
yields (4.11).

Now, let us return to equation (4.10), and equate the coefficientd'dfin the two
sides; the operatats = %LB"” is still involved, and we obtain
LBoY). (4.15)

‘CZMLBOU = [Bs,q:
This means that, at each poiate U/, the differential operatoB, ,(u) is compatible with
the Boussinesq Lax operator (i.e. that its commutator \i#R"(u) is tangent to the Lax
submanifold in the space of differential operators). From here, and from a known result of

Drinfeld and Sokolov [2], it follows thaB, ,(u) is a linear combination of the form

By, (u) = Z Vo (LB () (4.16)

where i is an integer index, running over a finite set of values; in principle, the real
coefficientsy; ; could be functionals of the variables but the features of thB; expansion
ensure that they are constgntve observe that it cannot bg; = 0 for eachi, for this
would contradict the assumptiaB, , # 0. Let us apply equation (4.16) at = (0, 0); in

this way we obtainB, ,(0,0) = >, ¥5.i0', SO that we can write

B{(0,0) =€) " y,;0" + O(e’™). (4.17)

Comparing this equation with (3.25) (expressing the & condition), we infer

q=1[3s/2] -2 (4.18)
g/2-1 if i =[3s/2]—2

Vei = (4.19)
0 otherwise.

1 Otherwise, the coefficients of the differential operaiy, (v) would not be differential polynomials i.



On the continuous limit of integrable lattices Il 2743
From here and from equation (4.16) it follows that

By g () = 3111800 5 (o) = BB u) (4.20)
at anyu € U. Inserting this result into equation (4.15), we also obtain

Zy o (w) = ZB%w). (4.21)

Equations (4.18), (4.20) and (4.21) yield statements (3.29)—(3.30) in proposition 3.3. To
conclude the proof, we must derive (3.31), which will be attained in the following.

Step 3.e-expansion of¢. Let us insert into equation (3.24) the expansions (4.7), (4.6) and
(4.9); recalling thatz, ,, = 0 for 0 < m < ¢ — 1, we infer that the coefficients ef* on the
right-hand side must also be zero fokOm < g — 1, yielding the equations

Q—4.uduhs,4 =0 (422)
Q74,uduhs,5 + Q73,uduhs,4 =0 (423)
Q74,uduhs,q+3 + Q73,uduhs,q+2 +---+ Qq75,uduhs,4 =0. (424)

Equation (4.22) tells us that, 4, is a Casimir of the Poisson tens@®® = Q_4; on the
other hand, the only Casimirs of the Boussinesq theory whichvairtégrals of) differential
polynomial densities im are (up to constants) linear combinations with constant coefficients
of hB° and #§°Y, so we can write

hoa(u) = 1, + %0 / deu+ / de v, (4.25)

We claim that the coefficienty,, x, and «;, are zero; indeed by examination of the
transformation (3.2) one infers that neither constants nor terms proportiorfalta or

[ dx v can appear in the expansion gfff. In conclusion, we havé, 5 = 0; inserting this
result into equation (4.23) we obtaid 4dh,s = QB%dh,s = 0, and this again implies
hs5 = 0. lterating this argument, we infer

hsm =0 form <q+3. (4.26)

Now, let us return to equation (3.24) and equate the coefficierd$ of the expansions of
the two sides; sinc&, , = ZB and Q_4 = QB°, we obtain

ZB%w) = 0B, hy 14 4.27)
which implies
hy.gia = h2% (4.28)

up to the addition of a Casimir; the same argument employed above shows that this additive
term is necessarily zero. The last equation (with the result (4.18))f¢eads to (3.31) of
proposition 3.3, whose proof is how concluded. |

T A constant term could appear at most at order zere; ifi dx » and [ dx v could appear at most at orders two
and three, respectively. On the other hand, we know ihat= hs 2 = h; 3 = 0.



2744 C Morosi and L Pizzocchero
5. A sketch of the continuous limit for the K system

The Lax operator for thekKy system with any numbeN of fields a = (a3, ..., ayn)
is written in the introduction, see equation (1.3). The vector fields for this system have
the Lax formulations i€/dr, = [AS, L€], where AS(a) = (1/(N + 1))(L€)is(a) for
s =0,1,2,.... With our notation, theKy Poisson tensor at any poiat sends anv-tuple

o = (Batp)k=1,...N INO & = (&})j=1,.. N, Where
@; = N+12Qk8ak (5.1)
2k—1 2k—2j
Ok = it jj2ke] Doke — it jA_zje + ( )ak[le]aj Aje
=0 I1=1-2j

k-1 k—j—1
+<;— Z )ak—za_/+z[2ze]Azze. (5.2)

I=k—N

In the above sums, it is intended that:= 0 if i <1 ori > N andY.r_ :=0if a > b.

Each vector field of theK, hierarchy is Hamiltonian with respect t@¢, the
Hamiltonians being the traces of even powerd.of

It was shown in [5] that, under an appropriate field rescaling, the leading term in the
€ expansion ofL¢(«) is the s/(N + 1) KdV-type Lax operator. With our notation, the
rescaling is the map — o = ©¢(u) given by

(=D (Dt N+1-m\
w=rp (3 ) o 2?2 (krap)eums ©3

ForN =1, 01 ;= a, uy :=u and forN = 2, ay := a,00 := p, Uy ;= v, up ‘= u
this transformation gives, respectively, the mappings (2.1) and (3.2) NFarbitrary, the
analysis of [5] shows that

(— 1)1 1 oN+1
Le(a)la:(-)f(u) = (1 + Z ( ) ) + méN-H'L(U) + O(€N+2) (54)

where L(u) is the Lax operator of the/(N + 1) KdV theory (see (1.4)). Combining this
result with the method of sections 2 and 3, one could show that appropriate recombinations
of the companion operatorS and of theK vector fields give, in the +— 0 limit, the
homologous objects of thg (N + 1) KdV theory.

The Hamiltonian formalism of this theory (with a recombination scheme for the
Hamiltonians) could also be reconstructed, provided that one proves the following: if the
transformation (5.3) is applied to the Kupershmidt Poisson tensor (5.2), the leading term in
the e expansion is the first/(N + 1) Poisson structure. In principle, the verification of this
statement could be performed directly, using the explicit expressions fok th&oisson
tensor and the field rescaling. As a matter of fact, the computation is very difficuly for
arbitrary, so we have limited the verification to the caée= 3.

Let us introduce the notationg = «, ay ;= p, az ;= o. The K3 Poisson tensor has
the matrix representation

€ € €
ao ap ao

1
Qea = Z ,EOOl ;p ;a (55)
05 95, Q50
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05 = P Do + oA — a[_qA_c — pA_z
ap = Olae] Ase + op[3e] Aze + AP Age — ap — api—qA—c —0 A 5

Q5 ‘= 0[5 Ase + 204 Ase — €0 — 2O[— A_c

Q;a ‘= 02e] Aze + A PA +0p — A[_2] PA _2c — [_3] PA_3c — T A _4

05, ‘= PR PAz + (@02 + P} P) Aoe + Pl PAe — Pl-e] PA -
—(0[—2¢]0 + P-2e]P) A2 — P[-3e] PA 3¢

05 = pO(se] Ase + pO[a Ase + P03 Aze + PO2e] A2e — PO — PO[—] A e
—PO0[—2e] A _2¢ — POI_3] A _3e

0fy =0 A + 00 — 040 A_se — 0[50 A5,

05, = PR Aze + P20 Aoe + PO Ac + PO — P20 A _2c — P|-3]T A 3
—P[-4c]0 A_4e — P[50 A_s5c

Q5 = 0[5e]0 Asc + 0074 Ase + 00[3] Aze + 02610 Ao + 0[] Ac — 0[—0 A,
_U[—ZG]O'A—Ze — 0[,3€]O‘A,35 — O[—4¢]0 A,4é — O‘[,5€]O‘A,5€.

Settingui = u, uy := v, uz := w, the transformation (5.3) takes the form
a=3+ %ezu
p= —1—u+ed
o= % + %ezu — €3 + 2¢*w. (5.6)
The pullback of the Poisson tensor (5.5) along this transformation is described again by
equation (3.5). Explicitly, at each point = («, v, w) we have
2/ 0 0 10 105 10
Q,=| 2 1 0 10 105 395
V2et 12et 128 A\ 305, 505, G0k
2/e> 2/e3 1/2¢4

X 0 1/e3 1/2¢% . (5.7)
0 0 1/2¢4
Expanding ine, we have found
0 0 49,
Qs = = 0 49 20 +0 1 (5.8)
7 Beb * - et '

40, —20y, 20y +2ud, + u,

So the continuous limit of theKz Poisson structure has the expected behaviour: the
coefficient of(1/€°) is recognized to be the first Poisson tensor of éh@) KdV theory.
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